oo

Roy Weinstein

MICRONOMICS

Economic Research & Consulting

May 13, 1998

’?‘m;s@
g;m q_ oao(ﬁ

—

Secretary

Federal Trade Commission

6th and Pennsylvania Avenue. N.W.
Washington, D.C. 20580

The enclosed discussion of potential Year 2000 problems is submitted in response
to your request for comments.

RW:shb
Enclosure

[

ST
Q\\(rﬁt\.’/

‘&V“’P?wm
Bag) ¥ ??Oﬁ

R mogarer

MICRONOMICS

Measuring Year 2000 Damages:

A General Approach to Estimating Losses
Caused by Non-Compliant Software

by

James Ozenne
s Atanu Saha
Roy Weinstein

February 1998

[1
W

Measuring Year 2000 Damages:

A General Approach to Estimating Losses Caused by Non-Compliant Software

by

James Ozenne, Atanu Saha and Roy Weinstein'

A key finding of our analysis is that business disruption costs constitute only a
fraction of the total damages associated with the Year 2000 Problem. The media
and the existing research on this issue have largely ignored the other damage
components: the time value of money and the benefits forgone in the case of a

forced upgrade.

We demonstrate that these damage components can be

substantial and, under plausible assumptions, as high as the costs associated with

business disruption.

Introduction

As the year 2000 approaches, MIS
professionals around the world are busy
identifyi'ig, repairing and replacing software
affected by what has become known in the
MIS world as the Year 2000 Problem. This
problem, the use of two-digit fields to store
the year of a date, has the potential to disrupt
any business using the outdated software.

Although the Year 2000 Problem is familiar
to the MIS community, it remains less well

understood by the rest of the business world.
Essentially, the problem arises from the use
of two-digit year fields, a practice intended
to economize on computer resources. For
instance, the year 1998 is stored as "98"
rather than "1998". Under this scheme, the
year 2000 is stored as "00", with no way for
the computer program to distinguish
between the years 2000 and 1900. The
practice of writing programs using this date
coding developed in past decades, when
software was written under the assumption
that it would no longer be in use by the time
the year 2000 arrived. However, as this
software has developed incrementally into
today's systems, many two-digit date fields
remain. When a post-1999 date is entered
into one of these systems, the program may
treat the record as if it were 100 years old,
triggering inappropriate action of some kind.
Such records might be deleted, ignored, or
sorted incorrectly, or might cause the
program to crash or produce nonsensical
error messages or other unexpected results,
depending on the nature of the software.

' The authors are employed at Micronomics, Inc., an economic research and consulting firm in Los Angeles
and Washington, D.C. They are grateful to Andrew Steinberg for his assistance.

Ly o s e e

kS

Measuring Year 2000 Damages

The question of which computer systems
will be affected by the problem, and to what
extent their failure will disrupt business,
continues to be debated. Most attention,
though, seems to be focused on large
mainframe applications. Many of these
programs are based on old code written in
COBOL, a business programming language
widely used in the 60s, 70s, and 80s.
Companies now using the doomed software
are being forced to take action. Some will
elect to repair their existing systems,
perhaps by hiring COBOL programmers to
comb through their software and change
two-digit year fields to four-digit ones.
Other companies will replace their systems
entirely with state-of-the-art software,
thereby avoiding Year 2000 problems and
also gaining additional functionality.
Companies facing expensive software
repairs are eager to mitigate these expenses,
not only by implementing cost-effective
software solutions, but also in some cases by
holding the sellers of the defective software
financially responsible.

In order to calculate the amount of damage
in these cases, we must consider the direct
cost of installing new software and any
business interruption that may result from
Year 2000-related software failures. In
cases where a company uses the Year 2000
as an opportunity to install software that is
not only Year 2000 compliant, but also
provides the company with significant new
benefits, we must consider the change in the
company's position with respect to its
software upgrade path.

In this paper, we present a simple model for
estimating damages related to the Year 2000
Problem. Without attempting to incorporate

the complexities of the software market or
any specific technology, we take a general
approach that might be used to organize and
evaluate the details of any Year 2000
software damages case. A key finding of
our analysis is that business disruption costs
constitute only a fraction of the total
damages associated with the Year 2000
Problem. The media and the existing
research on this issue have largely ignored
the other damiage components: the time
value of money and the benefits forgone in
the case of a forced upgrade. We
demonstrate that these damage components
can be substantial and, under plausible
assumptions, as high as the costs associated
with business disruption.

The Value of the Software
Asset

Firms invest in software because they expect
that it will provide some benefit in the
future. Most software has a useful life of
several years and is installed with the
intention that it will be used on a continual
basis throughout its life. The value added
by a software system is the sum of the
stream of value it generates over its useful
life. Effective use of software may improve

MICRONOMICS, INC.

Measuring Year 2000 Damages

worker productivity, resulting in greater
output capacity and reduced payroll. Many
firms use software to manage and optimize
their supply, production, sales, and delivery
processes. The net value of a piece of
software to a company depends on its ability
to provide these benefits over time, weighed
against the costs associated with software
installation and operation, such as system
maintenance, user training, and technical
support.

We can visualize the stream of value
generated by a piece of software using a
graph as in Figure 1. In this graph, the
vertical axis represents the software's value.
Specifically we can think of this quantity as
dollars per day of increased profitability for
the firm. The horizontal axis represents
time. The area under the entire curve
represents the total value provided by
software over its useful life.

Figure 1: Simple Software Value Stream

Vaiue

%)

“w

2
9y
v-—cs-——

Time

In this diagram, we have shown three
distinct regions representing a life cycle that
might be associated with any piece of
software. The upward sloping region at the
beginning of the cycle, labeled area A, could
be explained by a gradual implementation

where not all the functionality is available at
once. A user training period, where the
operators first learn the basic features and
then become more sophisticated users, is
another possible explanation.

The flat region of the curve, area B, is a
period of constant production from the
software system. This is probably a good
approximation for any program that has
been in day-to-day use for some time,
especially if the business and technology are
fairly stable.

Area C, the downward sloping region,
represents a decline in the software's
usefulness. Such a decline might occur if
the software is designed for hardware that
becomes obsolete and expensive to
maintain. Another important possibility is

that changes 1in technology or the
marketplace make the software less
valuable.

Although the software might still perform as
well as ever, the work it is designed to do no
longer suits the needs of the company. Area
C might also represent a period during
which the software is being replaced -- that
is, the software's furctions are gradually
switched over to a new system.

It may be problematic to accurately measure
a software system's value at any given point
in time. However, most companies, In
making effective decisions about which
software to choose, confront the problem by
attempting to determine the relative value of
various software systems. Measuring such
an intangible quantity has no single best
method, and companies indeed use a range
of approaches from the gut feelings of
managers to large-scale, comparative

MICRONOMICS, INC.

Measuring Year 2000 Damages

benchmarking processes and detailed cost-
benefit studies. There are also research
firms that collect survey data and help
companies to value and compare software
packages. These sources may not render
complete information about the value of
software, but certainly provide some starting
point.

Investing in Software

To begin reaping the benefits of any
software system, a firm must first make
some initial investment. This investment
includes the purchase of finished software or
the cost of programming new software, as
well as the cost of user training, installation,
and any interruption in the business that
might result from the installation process.
Companies weigh these costs carefully
against the software's benefits.

Installation costs, unlike the software's value
stream, are incurred over a relatively short
period of time. Many of the initial cost
components are directly measurable: the
price of a software licensing fee, consulting
fees and salaries for programming,
customization, and installation work, and the
cost of user training sessions. Other
components such as down time and lost
productivity during the installation period

_4-

may not be directly measurable but are still
tangible costs that many firms are able to

quantify.

It is important to note that the installation
cost of software is often quite considerable.
SAP systems, which are a popular choice for
companies seeking to replace their non-
compliant systems, can cost more than four
times the software license fee to install.
Bruce Richardson, the Vice President of
Research Strategy for Advanced
Manufacturing Research, says, "our research
shows that for every dollar spent on SAP, at
least five dollars are spent on hardware,
databases and tools, consulting and services,
networking and complimentary applica-
tions."? Firm owners are quite aware of
these costs as well as the lost productivity
that occurs when new software is installed.

Another important factor for any company
repairing or replacing software during the
near-2000 time period is the current market
for programming services. The scramble to
fix the Year 2000 Problem has created a
seller's market for programmers, especially
those who can work in languages, like
COBOL, that are important to the Year 2000
rush. According to John A. Bace, Research
Director of Gartner Group, "In 1998, almost
anyone with those skills will be able to find
jobs at nearly a 50% premium over 1996
salaries."’

2 Cafasso, Rosemary, “AMR Launches the SAP
Advisory Program,” PR Newswire, 8/22/97, p822NEF005.

3 Gross, Neil, Amy Cortese and Steve Hamm,
“Software,” Business Week, 1/12/98, p. 86.

MICRONOMICS, INC.

EEEENNSNNEENNN———————— -

Measuring Year 2000 Damages

The Upgrade Process

Many factors -- a software program's
increasing or decreasing value over time, the
relative values of old and proposed new
software, upgrade installation costs, and
changes in the business and technology --
are important to a firm's choice and timing
of an upgrade. The rapid advance of
technology often forces firms to begin
addressing the issue of software upgrades
very early on -- sometimes even before their
original systems are installed. In deciding to
upgrade, a firm must consider not only the
costs and benefits of the new and improved
software, but also the forgone benefits of the
replaced system. The firm may want to
dump old software that does not work on
new hardware, or may find that the old
system cannot accommodate new business
requirements. On the other hand, the users'
proficiency with the old software may be so
well developed that a company will be
reluctant to make a change. The promise of
a superior system becoming available in the
future also might tempt a company to delay

upgrading.

In Figure 2, we present the software value
stream for a company as it goes through an
upgrade. Note that for simplicity, we have
dispensed with the ramp-up and declining
phases of the software's life cycle and left
only the constant region, keeping in mind
that real-world software is likely to increase

and decrease in value over its life. Also,
note that the new software provides a higher
level of value than the old. No firm will
replace its software unless it expects the new
product to perform better than the old one
could have. Therefore, the constant value
assumption in this diagram requires that the
value stream of the upgrade be higher than
the original.

Figure 2: Value Stream of Successive Upgrades

2nd Software Upgrade
Value \
)
1st Software Upgrade

N\

-

—

9
b

Time

Uncertainty plays a crucial role in the
upgrade decision. A company must make
some assumption about the future of the
business, as well as the future of available
software technology, before implementing a
particular software upgrade. Technological
advancements, industry downturn, and
changes in business requirements are
uncertain elements that make companies
cautious when deciding on a new software
system. Once a company commits to a new
system, reversal can involve substantial
costs. Companies frequently delay upgrade
decisions for this reason. Uncertainty as to
whether new software will perform as
expected also encourages caution. In an
uncertain world, a firm's flexibility is an
intangible but important asset.

MICRONOMICS, INC

Measuring Year 2000 Damages

Figure 3: Software Upgrade Productivity Comparison

Vaiue

($)

| Fusudw Sofware Upgrase .

i

Original Software ; Posmbie Sofware Upgrade 2

* l , Possbiie Sofware Upgrace 1

i

Figure 3 demonstrates one aspect of this
flexibility issue. In this diagram, a firm
faces the decision of upgrading or delaying
the decision. Delaying may mean that new
software technology will arrive, or that
future knowledge of the industry will
provide better guidance in the choice of
software.

Impact of the Year 2000

Companies now using non-compliant
software find themselves in a difficult
situation. First of all, many firms are
uncertain of the extent to which the Year
2000 Problem will affect their sofrware
systems. It also is unclear how costly Year
2000 software failures will be to any
business. In this uncertain environment,
different firms are pursuing different paths

-6-

in their bid to survive the crisis. Whether
firms replace many of their systems, or hire
programmers to repair their date fields, or
even delay action in hopes that software
failures will not significantly impact them,
these firms experience two distinct damage
components: the cost of any business
interruption caused by a software failure,
and the cost of being forced to repair or
replace non-compliant software in order to
avoid business interruption.

Business interruption costs associated with
Year 2000 failures are conceptually simple.
A software failure might cause a firm to
lose, delay, or mix up orders or invoices,
resulting in decreased revenue and angry
customers. Inventory and shipping mistakes
are likely to be costly, as are production
shutdowns that could result from a severe
software failure. These costs will occur
largely in the year 2000, but in many cases
have begun already and will continue into
the new millenium. Estimating the costs of
a Year 2000 software failure is by no means
casy, but is certainly possible. Insurance
companies that provide business interruption
coverage perform this type of calculation
regularly. Of course, many firms will be
fully compliant by the time the new
millenium arrives, thus avoiding any
business interruption costs.

The second component of Year 2000
damage, the cost of repairing or replacing
non-compliant software, is much more
complex. The complexity results from a
firm's option either to replace the software
with a system that has greater functionality
or to use the date field repair project as an
opportunity to build greater value into an
existing system. Once a firm has responded
to the Year 2000 crisis by installing software

MICRONOMICS, INC.

Measuring Year 2000 Damages

that is superior to its pre-2000 systems, it
begins to benefit from a higher level of
software value. It also has suffered the
flexibility loss discussed in the previous
section. In fact, the firm has embarked on a
completely different upgrade schedule from
one that it may have been planning before
learning of the Year 2000 Problem.

Figure 4 illustrates the situation of a firm
faced with a Year 2000 software problem.
In this diagram, the firm experiences a
period of business interruption, beginning at
the year 2000, in which the defective
software actually hurts the business. The
benefit curve lies below zero in this
situation, and the resulting diagonally
shaded region represents the direct costs
associated with the software failure. Once
the firm has successfully installed a
replacement system, it enters area B, a
period of positive software benefits.

Figure 4: Forced Upgrade Value Stream

Value
($)

$0

Al

Y2K Forced Upgrade

N\

Time

This firm may have preferred to delay any
upgrade decision, but the software defect
forces it into action. As a result, the firm
may miss out on advances in software

-7-

technology that occur towards the beginning
of the new millenium. Although the firm
begins benefiting from the software upgrade
right away, this solution may prove more
costly than necessary if business
requirements change and the company is
soon forced to upgrade again, or if an
industry downturn makes it impossible for
the company to recoup its investment.

The fact that the firm incurs the entire
installation cost of a software upgrade
shortly after the year 2000, rather than
delaying this cost, results in a loss of time
value of money. The firm also pays the
Year 2000 programmer premium for this
upgrade because it is forced to act during a
period of high programmer compensation.
Additional costs may result from the firm's
need to rush the installation process, rather
than taking it at a slower, more efficient
pace.

Adding Up Damages

In order to systematically organize a firm's
Year 2000 damages, we compare the real
world, in which the firm is forced to repair
or replace some non-compliant software and
experiences some software failures, with an
alternative world in which the firm's
software is Year 2000 compliant and can be
used without failure into the new millenium.

MICRONOMICS. INC.

Measuring Year 2000 Damages

For example. suppose a fictitious firm, XYZ
Whoissalers. Inc., uses an aging software
svstem to keep track of orders, shipping and
inventory. Unaware that this system is
riddlad with two-digit date fields, the
company enters the year 2000 completely
unprepared. As the new year begins, parts
of the system fail, forcing workers to
abandon many of the system's features and
keep tack of shipping schedules by hand.
The company is forced to hire additional
administrative workers to compensate.

XYZ immediately hires a consulting firm to
install a completely new, more powerful
piece of software, a move the company had
anticipated making in 2005. The system
takes one vear to install and costs a total of
$5 million. During that year, the expense
and lost business due to the old software's
failure amount to an additional $2 million
loss.

For this example, we assume that the new
software is functionally superior to the old
software. Its value to the company is
$500.000 per year more than the old
system's was. However, the year 2000
software is not as sophisticated as the
anticipated vear 2005 upgrade would have
been; its value fal's $500,000 per year short
of that level.

In Figure 5, we compare the real world of
XYZ, shown in black lines, with an
alternative world in which XYZ is able to
proceed with its plan of upgrading its
software in 2005, shown in red. Note that in
both the alternative world and the real
world, XYZ upgrades again at the year
2010. This assumption means that all of the
damages are incurred before that point, and

allows for a simple diagram and simple.
calculations. We could certainly create a
much more complex scenario. It is probably
not unrealistic, however, to assume that the
real and alternative worlds converge at some
point, given that upgrades may be motivated
by external factors such as a major advance
in software technology, a new business
requirement, or a company-wide reorgani-
zation.

-

Figure 5: Real World vs. Alternative World Comparison

Value

$

ol

Time

The damage calculation begins with the cost
of the Year 2000 software failure,
represented by the diagonally shaded area A.
This is the $2 million in expenses and lost
revenue caused by the failure of the old
software.

The next damage component is the $5
million setup cost of the new system.
However, in this case, XYZ has avoided
perhaps a $5 million setup cost in the year
2005, the year it originally planned to
implement a major software upgrade.
Assuming a six percent discount rate, the
cost to the firm of upgrading in 2000 rather
than 2005 is $1.26 million.

MICRONOMICS, INC.

Measuring Year 2000 Damages

At the same time, we must consider the
added value of the software purchased in
2000 and that of the forgone upgrade in
2005. In 2001 through 2004, the firm
derives more value from its new software
than the old software would have provided.
The present value of this $500,000 per year
gain is $1.73 million, represented by area B
on the diagram. However, in 2005 through
2009, XYZ misses out on the added value of
the year 2005 technology, which is $500,000
per year better than the year 2000 software.
The present value of this loss is $1.67
million, represented by area C. Subtracting
area C from area B, we have a net gain of
$0.06 million due to the altered value stream
of the software.

The total damages experienced by XYZ due
to the Year 2000 Problem can now be
calculated as:

area A + setup 2000 - PV(setup 2005) -
PV(area B) + PV(area C)

Where area A is the failure cost of $2
million, setup 2000 is the total software
installation cost in the real world ($5
million), PV(setup 2005) is the present value
of the software installation cost in the
alternative world ($3.74 million), PV(area
B) is the present value of the software value
stream improvement in the real world ($1.73
million), and PV(area C) is the present value
of the software value stream improvement
forgone in the real world ($1.67 million).
Substituting the numbers in our example
gives us:

$2 million + $5 million - $3.74 million -
$1.73 million + $1.67 million = $3.20
million

Thus, the damages comprise three
components:

1. Business disruption costs $2.00 mm
2. Time value of money $1.26 mm
3. Altered value stream of software -$0.06 mm

Total $3.20 mm

Two important general conclusions follow
from the analysis. First, business disruption
costs, which have captured most of the
media attention, make up only a fraction of
the total damages suffered by the firm.
Other components can be substantial. We
have not quantified the damages arising
from the loss of flexibility discussed earlier,
which may add significantly to the total.

The second general observation is that the
timing of the alternative and real world
upgrades substantially affect the damage
estimate. The later the company planned on
upgrading before discovering the Year 2000
Problem (the start of area C), the greater the
damages. This is because the more the firm
is forced to diverge from its plans, the
greater the loss of time value of money from
the software setup costs. The firm's loss of
flexibility also follows this pattern, since the
early upgrade robs the firm of the benefit of
information it would have applied to the
future upgrade decision. Similarly, the
software's longevity is important: if the
upgrade at the end of area C were to occur in
2015 rather than 2010, area C would be
larger and would represent a loss of $2.91
million. The altered value stream of the
software, area C minus area B, would then
result in a net loss of $1.18 million,
increasing our total damage estimate to
$4.44 million.

MICRONOMICS, INC.

Measuring Year 2000 Damages

In Review

In this paper, we have represented software
as an asset that derives its value from a
stream of benefit it provides to a firm.
Furthermore, we have assumed that firms
periodically replace their software, incurring
some costs of installation and training.
These costs are recouped over time, as the
company reaps the benefits of newer, more
productive software.

A company that unexpectedly faces a
software failure due to the Year 2000
Problem may incur business disruption
costs. However, we have shown that the
firm is likely to suffer from substantial
damages unrelated to business disruption.

-10-

The Year 2000 Problem forces a firm to
deviate from its planned software upgrade -
schedule. It is forced to incur upgrade costs
sooner than anticipated, resulting in a loss of
time value of money. Also, because of the
forced upgrade, the firm misses out on
benefits from advances in software
technology that occur at the beginning of the
new millenium. Our analysis shows that the
loss associated with these costs can be
substantial and may be as high as those
associated with business disruption.

It is undoubtedly true that every company's
software upgrade profile is unique and so is
the damage associated with its Year 2000
problems. We believe our model provides a
general framework and identifies the
features common to most companies'
problems. It is, thus, a reasonable starting
point for the analysis of damages in any
particular case.

MICRONOMICS, INC.

NN

Micronomics, Inc. is an economic research and consulting firm with offices in

Los Angeles and Washington, D.C. Our staff of economists, econometricians,

statisticians and computer professionals serves a national and international client

base. We specialize in the application of price theory and economic analysis to real-

world problems that require practical, yet sound, solutions. Our work focuses on

merger analysis, other antitrust issues, the valuation of intellectual property and

regulation. We also have extensive experience in areas such as damage assessment

and securities fraud. Our clients include law firms, publicly and privately held

businesses and government agencies.

For more information, please contact Roy Weinstein, Chairman

Micronomics, Inc.

400 South Hope Street
Suite 2500

Los Angeles, CA 90071
Tel: 213 629-2655

Fax: 213-688-8899
WWW.mICronomics.com

A

at (213) 629-2655.

Micronomics, Inc.

1201 New York Avenue
Sutte 530

Washington, D.C. 20005
Tel: 202 408-0272

Fax: 202-408-0273
WWW.mICronomics.corm

